1tanx*tan2x = sec 2x LS =1 (sin x/cos x)(sin 2x/ cos 2x) =1 (sin x/cos x)(2sin x* cos x)/ cos 2x) =12sin^2(x)/(cos 2x) ={cos(2x) 2sin^2(x)}/cos (2x)Separate fractions Rewrite tan(x) tan ( x) in terms of sines and cosines Multiply by the reciprocal of the fraction to divide by sin(x) cos(x) sin ( x) cos ( x) Convert from cos(x) sin(x) cos ( x) sin ( x) to cot(x) cot ( x) Divide sec2(x) sec 2 ( x) by 1 1 Rewrite sec(x) sec (Get an answer for 'Prove that tan^2x/(1tan^2x) = sin^2x' and find homework help for other Math questions at eNotes
2
5.25064634
5.25064634-The most general solutions of the equation sec^2x = root2(1 tan^2x) are given bySolution for tan (2x)sec (2x)dx 3 Physics Social Science
Ex 34, 8 Find the general solution of the equation sec2 2x = 1 – tan 2x sec2 2x = 1 – tan 2x 1 tan2 2x = 1 – tan2x tan2 2x tan2x = 1 – 1 tan2 2x tan2x = 0 tan 2x (tan2x 1) = 0 Hence We know that sec2 x = 1 tan2 x So, sec2 2x = 1 tan2 2x tan 2x = 0 ta 证明过程如下:tan²x=sin²x/cos²x=(1cos²x)/cos²x=1/cos²x1=sec²x1。 运用证明的公式如下: (1)平方关系: sin^2(α)cos^2(α)=1 tan^2(α)1=sec^2(α) cot^2(α)1=csc^2(α) (2)积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα (3)倒数关系: 采纳率: 100% 帮助的人: 164万 我也去答题 访问个人页 关注 展开全部 楼主,原式1tan^2x可化为: 已赞过 已踩过 < 你对这个回答的评价是?
Find the general solution of the equation sec^2 2x = 1 tan 2x LH S = tan2x secx 1 1 = sec2x −1 secx 1 1 = (secx 1)(secx − 1) secx 1 1 *You can now get rid of (secx1) at the top and bottom of the fraction When the numerator and denominator of a fraction are both the same, providing they aren't both zeros, what you get is 1 = secx − 1 1 = secx = RH SClick here👆to get an answer to your question ️ If tan^2xsecxa=0 has atleast one solution
If 2x = sec A and 2/x = tan A prove that (x^2 1/x^2 ) = 1/4 Sarthaks eConnect Largest Online Education Community If 2x = sec A and 2/x = tan A prove that (x2 1/x2) = 1/4 Login =(1cos²x)/cos²x =1/cos²x1 =sec²x1 因为secx=1/cosx 扩展资料 cotx乘tan2x=sec2x tan2x=2tanx/(1tanx的平方) 设tanx=t,则原方程变为: 2t/(1t^2)1/t=0 即:2t^2(1t^2)=0 t =±根号3/3 tanx =±根号3/3 可得x=kπ±π/6 x∈0,2π 所以x=π/6,5π/6,7π/6,11π/61年前 1个回答 求几个特殊三角函数值0 30 45 60 90的sin cos tan cot sec csc1楼的正割和余割?
The values of x and y which satisfy the equation 1 2 sin x 5 cos x = 2 y 2 − 8 y 2 1 are View solution If tan A is an integral solution of the inequality 4 x 2 − 1 6 x 1 5 < 0 and cos B is equal to slope of the bisector of the angle in the first quadrant between the x and y axes, then the value of sin ( A − B ) sin ( A B ) isTan^2xsec^2x/1tan^6x Ask questions, doubts, problems and we will help youA)cot x b)csc x c)tan x d)sec x tan x Please help me ( Math What is a simplified form of the expression sec^2x1/(sinx)(secx)?
What is a simplified form of the expression sec^2x1/sin x sec x ? answered by Ria (548k points) selected by faiz Best answer sec θ tan θ = 1/4x 1/4x = 1/2x Please log in or register to add a commentFound 2 solutions by ewatrrr, MathLover1 Answer by ewatrrr () ( Show Source ) You can put this solution on YOUR website!
Tanx = t Sec^2 x dx= dt So now it is, 1/ (1t)^2 dt This integral is given by 1/1t and t= tanx So, it is cosx/cosx sinx tanx = t Sec^2 x dx= dt So now it is, 1/ (1t)^2 dt This integral is given by 1/1t and t= tanx So, it is cosx/cosx sinx Integral of the function \frac {\cos ^2 x} {1\tan x}Differentiate wrt x \frac {2\tan (2x1)} {\cos (2x1)} cos(2x−1)2 tan(2x−1) View solution steps Steps Using Chain Rule \sec ( 2x1 ) sec ( 2 x − 1) If F is the composition of two differentiable functions f\left (u\right) and u=g\left (x\right), that is, if F\left (x\right)=f\left (g\left (x\right)\right), then the derivative of F is theTan^2xtan^2y=sec^2xsec^2y and, how do you factor and simplify, cscx(sin^2xcos^2xtanx)/sinxcosx Inverse trigonometry Prove that tan^1(1/2tan 2A)tan^1(cotA)tan^1(cot^3A) ={0,ifpi/4 math (trigonometry) A=170 degree then prove that Tan A/2=1rot(1Tan^2 A)/Tan A math
$$\sec^2 x \tan^2 x = 1$$ I notice that $\tan^2 x 1 = \sec^2 x$ so I tried substituting $\sec^2 x$ with $\tan^2 x 1$ I get $$\tan^2 x 1 \tan^2 x = 1 \tag{1}$$ Then I try to solve by using the zero product property, so I subtract 1 from the right side of the equation Leaving me with $$\tan^2 x \tan^2 x = 0 \tag{2}$$ (sec(x) sen²(x) cos²(x)) (sec(x) 1) = tan²(x)Existe una identidad que dicesen²(x) cos²(x) = 1Entonces(sec(x) 1)(sec(x) 1) = tan²(x)sec²(x) 1 = ta the number of solution of the equation tan^2xsec^(10)x1=0 in (0,10) is Updated On 187 To keep watching this video solution for FREE, Download our App Join the 2 Crores Student community now!
`int tanx sec^2x sqrt(1tan^2x) dx` `int tanx sec^2x sqrt(1tan^2x) dx` Books Physics NCERT DC Pandey Sunil Batra HC Verma Pradeep Errorless Chemistry NCERT P Bahadur IITJEE Previous Year Narendra Awasthi MS Chauhan Biology NCERT NCERT Explanation This is readily derived directly from the definition of the basic trigonometric functions sin and cos and Pythagoras's Theorem Confirming that the result is an identity Yes, sec2 − 1 = tan2x is an identityCalculus Solve for x tan (2x)=1 tan (2x) = 1 tan ( 2 x) = 1 Take the inverse tangent of both sides of the equation to extract x x from inside the tangent 2x = arctan(1) 2 x = arctan ( 1) The exact value of arctan(1) arctan ( 1) is π 4 π 4 2x = π 4 2 x = π 4 Divide each term by 2 2 and simplify
Get answer sec ^(2) 2x =1tan 2x Apne doubts clear karein ab Whatsapp par bhi Try it nowYes, sec 2 x−1=tan 2 x is an identity sec 2 −1=tan 2 x Let us derive the equation We know the identity sin 2 (x)cos 2 (x)=1 ——(i) Dividing throughout the equation by cos 2 (x) We get sin 2 (x)/cos 2 (x) cos 2 (x)/cos 2 (x) = 1/cos 2 (x) We know that sin 2 (x)/cos 2 (x)= tan 2 (x), and cos 2 (x)/cos 2 (x) = 1 So the equation (i) after substituting becomes tan 2 (x) 1= 1Watch Video in App
Respuesta Explicación paso a paso (1tan^2x)cosx=secx , cuales identidades son 1tan^2x=sec^2x cosx = 1/secx (1tan^2x)cosx=secx sec^2x (1/secx)=secx sec^2xHi Simplifying the following (sec^2x csc^2x) (tan^2x cot^2x) tan^2x = sec^2x 1 cot^2x = csc^2x 1 (sec^2x csc^2x) (sec^2x 1 csc^2x 1)= 2👍 Correct answer to the question Prove that tan^2x sec^2x=1 eeduanswerscom
A cot x b csc x c tan x***** d sec x tan x I think this is the correct answer, but I do not understand why Can someone please explain?To ask Unlimited Maths doubts download Doubtnut from https//googl/9WZjCW `sec^(2)2x=1tan2x`Integration of sec^2x/1tan x (Solution)Integration of sec^2x/1tan x (Solution) dx this video teaches us how to Integration of sec^2x/1tan x (Solution) d
Solve your math problems using our free math solver with stepbystep solutions Our math solver supports basic math, prealgebra, algebra, trigonometry, calculus and moreRewrite sec(x) sec ( x) in terms of sines and cosines Rewrite tan(x) tan ( x) in terms of sines and cosines Multiply by the reciprocal of the fraction to divide by 1 cos(x) 1 cos ( x) Write cos(x) cos ( x) as a fraction with denominator 1 1 Cancel the common factor of cos(x) cos ( x)Lista över trigonometriska identiteter är en lista av ekvationer som involverar trigonometriska funktioner och som är sanna för varje enskilt värde av de förekommande variablerna De skiljer sig från triangelidentiteter, vilka är identiteter som potentiellt involverar vinklar, men även omfattar sidolängder eller andra längder i en triangel
Identity\\sin(2x) identity\\cos(2x) identity\\sin^2(x)\cos^2(x) trigonometricidentitycalculator Prove sec^{2}xtan^{2}x=1 en Related Symbolab blog posts I know what you did last summerTrigonometric Proofs To prove a trigonometric identity you have to show that one side of the equation can be transformed into the other HOPE IT HELPS Vote helpful if it does !!!! If tan x = t then tan 2x sec 2x is equal to A \(\frac{1 t}{1 t}\) B \(\frac{1 t}{1 t}\) C \(\frac{2t}{1 t}\) D \(\frac{2t}{1 t}\)
Find an answer to your question tan^2x 1 = sec^2x PROVE hopelafave is waiting for your help Add your answer and earn pointsVerify $$\sec^2x \tan^2x = (1\sin^4x)\sec^4x$$ My solution $$ \begin{align}\sec^2x\tan^2x&=\frac{1}{\cos^2x}\frac{\sin^2x}{\cos^2x}\\ &=\frac{1\sin^2x}{\cos(1\times2) (1\times3) (1\times4) (1\times5) (1\times6) (2\times1) (3\times1) (4\times1) (5\times1) (6\times1) (7\times1)
0 件のコメント:
コメントを投稿